Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.

Identifieur interne : 002434 ( Main/Exploration ); précédent : 002433; suivant : 002435

Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.

Auteurs : Sandra Irmisch [Allemagne] ; Andrea Clavijo Mccormick ; G Andreas Boeckler ; Axel Schmidt ; Michael Reichelt ; Bernd Schneider ; Katja Block ; Jörg-Peter Schnitzler ; Jonathan Gershenzon ; Sybille B. Unsicker ; Tobias G. Köllner

Source :

RBID : pubmed:24220631

Descripteurs français

English descriptors

Abstract

Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.

DOI: 10.1105/tpc.113.118265
PubMed: 24220631
PubMed Central: PMC3875747


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.</title>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, 07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Andrea Clavijo" sort="Mccormick, Andrea Clavijo" uniqKey="Mccormick A" first="Andrea Clavijo" last="Mccormick">Andrea Clavijo Mccormick</name>
</author>
<author>
<name sortKey="Boeckler, G Andreas" sort="Boeckler, G Andreas" uniqKey="Boeckler G" first="G Andreas" last="Boeckler">G Andreas Boeckler</name>
</author>
<author>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
</author>
<author>
<name sortKey="Schneider, Bernd" sort="Schneider, Bernd" uniqKey="Schneider B" first="Bernd" last="Schneider">Bernd Schneider</name>
</author>
<author>
<name sortKey="Block, Katja" sort="Block, Katja" uniqKey="Block K" first="Katja" last="Block">Katja Block</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24220631</idno>
<idno type="pmid">24220631</idno>
<idno type="doi">10.1105/tpc.113.118265</idno>
<idno type="pmc">PMC3875747</idno>
<idno type="wicri:Area/Main/Corpus">002405</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002405</idno>
<idno type="wicri:Area/Main/Curation">002405</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002405</idno>
<idno type="wicri:Area/Main/Exploration">002405</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.</title>
<author>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max Planck Institute for Chemical Ecology, 07745 Jena</wicri:regionArea>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
<wicri:noRegion>07745 Jena</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mccormick, Andrea Clavijo" sort="Mccormick, Andrea Clavijo" uniqKey="Mccormick A" first="Andrea Clavijo" last="Mccormick">Andrea Clavijo Mccormick</name>
</author>
<author>
<name sortKey="Boeckler, G Andreas" sort="Boeckler, G Andreas" uniqKey="Boeckler G" first="G Andreas" last="Boeckler">G Andreas Boeckler</name>
</author>
<author>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
</author>
<author>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
</author>
<author>
<name sortKey="Schneider, Bernd" sort="Schneider, Bernd" uniqKey="Schneider B" first="Bernd" last="Schneider">Bernd Schneider</name>
</author>
<author>
<name sortKey="Block, Katja" sort="Block, Katja" uniqKey="Block K" first="Katja" last="Block">Katja Block</name>
</author>
<author>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
</author>
<author>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohols (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Mortality (MeSH)</term>
<term>Moths (drug effects)</term>
<term>Moths (growth & development)</term>
<term>Moths (physiology)</term>
<term>Nitriles (metabolism)</term>
<term>Oximes (metabolism)</term>
<term>Oximes (pharmacology)</term>
<term>Phenylalanine (metabolism)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Volatile Organic Compounds (analysis)</term>
<term>Volatile Organic Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcools (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Composés organiques volatils (analyse)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Génome végétal (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Mortalité (MeSH)</term>
<term>Nitriles (métabolisme)</term>
<term>Oximes (métabolisme)</term>
<term>Oximes (pharmacologie)</term>
<term>Papillons de nuit (croissance et développement)</term>
<term>Papillons de nuit (effets des médicaments et des substances chimiques)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Phénylalanine (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohols</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Nitriles</term>
<term>Oximes</term>
<term>Phenylalanine</term>
<term>Plant Proteins</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Composés organiques volatils</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcools</term>
<term>Composés organiques volatils</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Feuilles de plante</term>
<term>Nitriles</term>
<term>Oximes</term>
<term>Phénylalanine</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Oximes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Oximes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Papillons de nuit</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Moths</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Knockdown Techniques</term>
<term>Genome, Plant</term>
<term>Herbivory</term>
<term>Mortality</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Génome végétal</term>
<term>Herbivorie</term>
<term>Mortalité</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Techniques de knock-down de gènes</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24220631</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.</ArticleTitle>
<Pagination>
<MedlinePgn>4737-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.113.118265</ELocationID>
<Abstract>
<AbstractText>Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Irmisch</LastName>
<ForeName>Sandra</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Max Planck Institute for Chemical Ecology, 07745 Jena, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>Andrea Clavijo</ForeName>
<Initials>AC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Boeckler</LastName>
<ForeName>G Andreas</ForeName>
<Initials>GA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Axel</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reichelt</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schneider</LastName>
<ForeName>Bernd</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Block</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnitzler</LastName>
<ForeName>Jörg-Peter</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Unsicker</LastName>
<ForeName>Sybille B</ForeName>
<Initials>SB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Köllner</LastName>
<ForeName>Tobias G</ForeName>
<Initials>TG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000438">Alcohols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009570">Nitriles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010091">Oximes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>47E5O17Y3R</RegistryNumber>
<NameOfSubstance UI="D010649">Phenylalanine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7028-48-0</RegistryNumber>
<NameOfSubstance UI="C408881">phenylacetaldoxime</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000438" MajorTopicYN="N">Alcohols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009026" MajorTopicYN="N">Mortality</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009570" MajorTopicYN="N">Nitriles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010091" MajorTopicYN="N">Oximes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010649" MajorTopicYN="N">Phenylalanine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24220631</ArticleId>
<ArticleId IdType="pii">tpc.113.118265</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.113.118265</ArticleId>
<ArticleId IdType="pmc">PMC3875747</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytochemistry. 2005 Jun;66(11):1211-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15946712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 25;101(21):8245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15148388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:41-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Jun;66(6):2290-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10831401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1795-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 3;330(6009):1328-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 21;275(3):1966-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10636899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):71-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Nov;38(5):725-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9862490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1992 Jan;292(1):141-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1727632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1437-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1994 Feb;20(2):373-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24242061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Mar;21(3):273-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2013 Feb 19;368(1612):20120426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23297350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Oct 1;322(2):369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7574710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jul;111(3):831-837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2008;8:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 12;275(19):14659-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Jan;30(1):69-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15074658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Oct-Nov;70(15-16):1638-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19523656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1996;272:51-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8791762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Jun;9(3):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;184(1):48-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19674332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Apr 10;255(7):3049-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7358727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Apr;122(4):1311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10759528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1992 Apr;11(3):137-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24213546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Jun 15;222(3):843-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8026495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013;14(5):10242-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23681010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 24;270(8):3506-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7876084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotox Res. 2006 Jun;9(4):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 May;8(3):326-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16807824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Feb;36(3):393-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9484480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(2):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):1129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2012 May;77:260-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22385904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(9):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):2039-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2005 Jun 29;53(13):5134-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Oct-Nov;70(15-16):1621-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metabol Drug Interact. 1995;12(3-4):189-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8820852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Block, Katja" sort="Block, Katja" uniqKey="Block K" first="Katja" last="Block">Katja Block</name>
<name sortKey="Boeckler, G Andreas" sort="Boeckler, G Andreas" uniqKey="Boeckler G" first="G Andreas" last="Boeckler">G Andreas Boeckler</name>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<name sortKey="Mccormick, Andrea Clavijo" sort="Mccormick, Andrea Clavijo" uniqKey="Mccormick A" first="Andrea Clavijo" last="Mccormick">Andrea Clavijo Mccormick</name>
<name sortKey="Reichelt, Michael" sort="Reichelt, Michael" uniqKey="Reichelt M" first="Michael" last="Reichelt">Michael Reichelt</name>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
<name sortKey="Schneider, Bernd" sort="Schneider, Bernd" uniqKey="Schneider B" first="Bernd" last="Schneider">Bernd Schneider</name>
<name sortKey="Schnitzler, Jorg Peter" sort="Schnitzler, Jorg Peter" uniqKey="Schnitzler J" first="Jörg-Peter" last="Schnitzler">Jörg-Peter Schnitzler</name>
<name sortKey="Unsicker, Sybille B" sort="Unsicker, Sybille B" uniqKey="Unsicker S" first="Sybille B" last="Unsicker">Sybille B. Unsicker</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Irmisch, Sandra" sort="Irmisch, Sandra" uniqKey="Irmisch S" first="Sandra" last="Irmisch">Sandra Irmisch</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002434 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002434 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24220631
   |texte=   Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24220631" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020